首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   665篇
  免费   58篇
  国内免费   2篇
化学   501篇
晶体学   7篇
力学   21篇
数学   67篇
物理学   129篇
  2023年   17篇
  2022年   18篇
  2021年   27篇
  2020年   22篇
  2019年   31篇
  2018年   21篇
  2017年   33篇
  2016年   32篇
  2015年   30篇
  2014年   22篇
  2013年   34篇
  2012年   50篇
  2011年   62篇
  2010年   43篇
  2009年   34篇
  2008年   44篇
  2007年   43篇
  2006年   27篇
  2005年   33篇
  2004年   13篇
  2003年   18篇
  2002年   13篇
  2001年   8篇
  2000年   9篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1967年   1篇
  1966年   5篇
  1965年   1篇
排序方式: 共有725条查询结果,搜索用时 31 毫秒
121.
This article deals with isomeric ruthenium complexes [RuIII(LR)2(acac)] (S=1/2) involving unsymmetric β‐ketoiminates (AcNac) (LR=R‐AcNac, R=H ( 1 ), Cl ( 2 ), OMe ( 3 ); acac=acetylacetonate) [R=para‐substituents (H, Cl, OMe) of N‐bearing aryl group]. The isomeric identities of the complexes, cct (ciscis‐trans, blue, a ), ctc (cis‐trans‐cis, green, b ) and ccc (ciscis‐cis, pink, c ) with respect to oxygen (acac), oxygen (L) and nitrogen (L) donors, respectively, were authenticated by their single‐crystal X‐ray structures and spectroscopic/electrochemical features. One‐electron reversible oxidation and reduction processes of 1 – 3 led to the electronic formulations of [RuIII(L)(L ? )(acac)]+ and [RuII(L)2(acac)]? for 1 +‐ 3 + (S=1) and 1? – 3? (S=0), respectively. The triplet state of 1 +‐ 3 + was corroborated by its forbidden weak half‐field signal near g≈4.0 at 4 K, revealing the non‐innocent feature of L. Interestingly, among the three isomeric forms ( a – c in 1 – 3 ), the ctc ( b in 2 b or 3 b ) isomer selectively underwent oxidative functionalization at the central β‐carbon (C?H→C=O) of one of the L ligands in air, leading to the formation of diamagnetic [RuII(L)(L ′ )(acac)] (L ′ =diketoimine) in 4 / 4′ . Mechanistic aspects of the oxygenation process of AcNac in 2 b were also explored via kinetic and theoretical studies.  相似文献   
122.
A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst–Planck equations for the distribution of ions; and the Navier–Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.  相似文献   
123.
We present an experimental and numerical study of immiscible two-phase flow of Newtonian fluids in three-dimensional (3D) porous media to find the relationship between the volumetric flow rate (Q) and the total pressure difference (\(\Delta P\)) in the steady state. We show that in the regime where capillary forces compete with the viscous forces, the distribution of capillary barriers at the interfaces effectively creates a yield threshold (\(P_t\)), making the fluids reminiscent of a Bingham viscoplastic fluid in the porous medium. In this regime, Q depends quadratically on an excess pressure drop (\(\Delta P-P_t\)). While increasing the flow rate, there is a transition, beyond which the overall flow is Newtonian and the relationship is linear. In our experiments, we build a model porous medium using a column of glass beads transporting two fluids, deionized water and air. For the numerical study, reconstructed 3D pore networks from real core samples are considered and the transport of wetting and non-wetting fluids through the network is modeled by tracking the fluid interfaces with time. We find agreement between our numerical and experimental results. Our results match with the mean-field results reported earlier.  相似文献   
124.
Santanu K. Maiti   《Solid State Communications》2009,149(39-40):1623-1627
We address XOR gate response in a mesoscopic ring threaded by a magnetic flux . The ring, composed of identical quantum dots, is symmetrically attached to two semi-infinite one-dimensional metallic electrodes and two gate voltages, viz, Va and Vb, are applied, respectively, in each arm of the ring which are treated as the two inputs of the XOR gate. The calculations are based on the tight-binding model and the Green’s function method, which numerically compute the conductance–energy and current–voltage characteristics as functions of the ring-electrodes coupling strengths, magnetic flux and gate voltages. Quite interestingly it is observed that, for =0/2 (0=ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears if one, and only one, of the inputs to the gate is high (1), while if both inputs are low (0) or both are high (1), a low output current (0) appears. It clearly demonstrates the XOR behavior and this aspect may be utilized in designing the electronic logic gate.  相似文献   
125.
126.
Due to technological advancement, environment suffers from untreated toxic heavy metal bearing effluent coming from different industries. Chromium (VI) is one of those heavy metals having adverse impact on ecological balance, human, and plant health because of its carcinogenic properties. Biosorption is presented as an alternative to traditional technologies which are costly and inefficient for treatment of industrial wastes containing low amount of heavy metals. In this study, bioremediation of Cr (VI) ions by immobilized Bacillus cereus M1 16 was investigated in a laboratory scale packed bed up-flow column reactor. The effect of important parameters, such as the inlet flow rate, influent concentration, and effective bed height, has been studied. External mass transfer, surface adsorption, and intrabead mass transfer were also studied to conclude the rate limiting step for removal of Cr (VI) and to determine the process parameters which are important for biosorption optimization. The external mass transfer coefficient was calculated at different flow rates (6.51 × 10−2 to 7.58 × 10−2 cm/min). Using the model, the surface adsorption rate constant (k ad) and the intrabead mass transfer coefficient (k i) were predicted as 0.0267 × 10−3 and 0.7465 × 10−3 l/g/min, respectively. Both are much lower than the external mass transfer coefficient (k e). The surface adsorption phenomenon is acting as the rate-limiting step due to its high resistance for removal of Cr (VI).  相似文献   
127.
Two coordination polymers of the formula [Zn5(tmaH)4(trz)2(H2O)4] (1) and [Zn3(bta)(trz)2(H2O)4]·2H2O (2) [tmaH3 = benzene-1,3,5-tricarboxylic acid/trimesic acid, trzH = 1,2,4-triazole, btaH4 = benzene-1,2,4,5-tetracarboxylic acid] have been synthesized and structurally characterized by X-ray single crystal diffraction analysis. Both complexes are 3D coordination polymers containing [Zn4(trz)2] units connected by benzene-carboxylate anions. In particular, an undulated layer containing 6- and 18-membered rings is outlined in the network of 1. Hydrogen bonds, involving the coordinated and lattice water molecules with carboxylate oxygen atoms, contribute to the stabilization of the networks. Their thermal stability was investigated by thermogravimetric analysis. The fluorescence spectrum of 1 features two peaks at 419 and 323 nm, originating from a π–π∗ intraligand transition and LMCT, respectively. For 2 a broad band at 410 nm is assigned solely as a π–π∗ intraligand transition.  相似文献   
128.
The excited state intramolecular proton transfer (ESIPT) processes in 3‐methylsalicyclic acid (3‐MeSA) and 3‐methoxysalicyclic acid (3‐MeOSA) have been investigated in cyclohexane medium by emission spectroscopic techniques. The ESIPT process was characterized in 3‐MeSA from the large Stokes fluorescent band (455 nm), but it was suppressed by 3‐MeOSA in cyclohexane. The ESIPT process was found to be accelerated both in 3‐MeSA and 3‐MeOSA in the presence of a hydrogen bond accepting agent, triethylamine (TEA). Further, theoretical calculations were carried out at the ground and excited states to complement the experimental evidences.  相似文献   
129.
New iron (III) complexes of S-methyl-βN-(5-methylpyrazole-3-yl)methylenedithiocarbazate, S-benzyl-β-N-β-(5-methylpyrazole-3-yl)methylenedithiocarbazate, 5-methyl-3-formylpyrazole-3-pyrrolidinylthiosemicarbazone, and 5-methyl-3-formylpyrazole-4N-benzylthiosemicarbazone have been synthesized and physicochemically characterized by elemental analyses, magnetic moment measurements (polycrystalline state), electronic, IR, and EPR spectra, as well as conductance measurements, are used to confirm the coordination geometry. The spectral studies reveal the low-spin distorted octahedral structure of the iron (III) complexes containing two uninegative tridentate ligands with NNS donor sites, where the EPR data confirm the presence of a spin — paired iron (III) with d xz 2 d yz 2 d xy 1 configuration in the ground state. The article is published in the original.  相似文献   
130.
Ternary copper indium sulfide (CIS) nanocrystals (NCs) have been synthesized by mixing of binary precursor [CuI(bdpa)2][CuICl2] (1) and/or [CuI(mdpa)2][CuICl2] (2) (where, mdpa and bdpa represent methyl and benzyl ester of 3,5-dimethyl pyrazole-1-dithioic acid, respectively) with InCl3 in a low-temperature solvothermal process. The +1 oxidation state of copper and the atomic ratio Cu to S (1:2) is atomically maintained in the pyrazole-based Cu(I)–S precursor to synthesize phase pure CuInS2. Coordinating solvents like ethylene diamine (EN) and ethylene glycol (EG) have been used in the synthesis without any surfactants. No use of external surfactants in the synthesis of CIS nanoparticles reveals that precursor acts as stabilizing agent. The synthesized nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX) studies. The optical property of the nanocrystals shows a pronounced quantum confinement effect in the particles with band gap energy ca. 1.5 eV. The formation mechanism of ternary CIS has been proposed. The pore size distributions of the particles show the average pore diameters 13.1 nm from 1 and 5.3 nm from 2. The calculated values of the specific surface area are 8.123 and 9.577 m2/g for 1 and 2, respectively. The excellent photocatalytic degradation of rose bengal (RB) and rhodamine B (RhB) was demonstrated by the porous CIS nanocrystals.
Graphical abstract Enhanced photocatalytic activity of ternary CuInS2 nanocrystals synthesized from the combination of a binary Cu(I)S precursor and InCl3. Gopinath Mondal, Ananyakumari Santra, Sumanta Jana, Nimai Chand Pramanik, Anup Mondal and Pulakesh Bera
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号